Description
5.1 Matplotlib Overview & Setup
Matplotlib is the “grandfather” library of Python visualization, built to resemble MATLAB’s plotting capabilities.
-
Pyplot: The core module (
import matplotlib.pyplot as plt) providing a state-machine interface for plotting. -
Backend: The engine that renders the plots (e.g., Inline for Jupyter, GUI for desktop).
-
Installation: Handled via package managers using
pip install matplotliborconda install matplotlib. -
Figure & Axes: The “Figure” is the entire window/page; the “Axes” is the specific area where the data is plotted.
5.2 Basic Plotting & Customization
Creating the primary chart types and adding essential metadata.
-
Line Plot:
plt.plot()— Used for trends over time. -
Scatter Plot:
plt.scatter()— Used to show correlation between two variables. -
Bar Chart:
plt.bar()(vertical) orplt.barh()(horizontal) — Used for categorical comparisons. -
Histogram:
plt.hist()— Used to show frequency distribution; requires “bins.” -
Metadata:
-
plt.title(): The main heading. -
plt.xlabel()/plt.ylabel(): Identifying the X and Y axes. -
plt.legend(): A key to identify different data series (requires alabelargument in the plot function).
-
5.3 Figure Control & Axis Customization
Fine-tuning the layout and scale of the visualization.
-
Figure Size:
plt.figure(figsize=(w, h))— Defining the width and height in inches. -
DPI: Dots Per Inch; controls the “sharpness” or resolution of the figure.
-
Axis Limits:
plt.xlim()andplt.ylim()— Setting the minimum and maximum range of the axes. -
Ticks:
plt.xticks()andplt.yticks()— Customizing the markers/numbers on the axes (e.g., rotating text or changing intervals).
5.4 Exporting & Interactivity
Saving your work and making it dynamic.
-
Saving Plots:
plt.savefig('filename.ext'). -
File Formats: * Raster: PNG, JPG (good for web).
-
Vector: PDF, SVG (scalable without losing quality).
-
-
Quality Control: Using the
dpiparameter withinsavefig()for high-resolution print output. -
Matplotlib Widgets: Tools like Sliders and Buttons that allow users to interact with the data (e.g., changing a frequency or filtering data points) without rerunning code.
Core Syntax Summary Table
| Goal | Matplotlib Function |
| Draw a Line | plt.plot(x, y) |
| Add Grid | plt.grid(True) |
| Save Image | plt.savefig('plot.png', dpi=300) |
| Show Plot | plt.show() |





Reviews
There are no reviews yet.